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Abstract 

The objective of this paper is to revisit the concepts of diversifiable and non-diversifiable risk, expound 
the portfolio risk technically and with practical examples, and explains lending and borrowing at the risk-
free rate of return. It also puts the diversification method ofmeasuringthe unsystematic risk against the 
method of market beta of measuring the systematic risk.  Furthermore, it briefly examines the 
mathematical simulation and sensitivity analysis, and mathematically delineates the technique for choices 
under risk, ambiguity, and uncertainty. 
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Research on risk, its measurement and tolerance in the context of market and business investment has 
been around and been advancing for the last hundred years or so. Probably the economic approach to risk goes 
back to the pioneering studies by Frank Knight at the start of the 1920’s, and more specifically, the modern 
portfolio analysis goes back to the studies of Markowitz (1952), Modigliani and Miller (1958), and Sharpe (1964). 
With that relatively long history of literature, there has been a diversity of perceptions and a variety of 
applications, whose approaches depended on who was adopting them! whether they were academics and theorists, 
empirical researchers, or corporate practitioners. Theorists, for example, have realized the prevalent mix-ups in 
major concepts such as the typical confusion between the natures of uncertainty and ambiguity.  On the other 
hand, the empirical researchers have discovered that some constructs such as the major statistical measures 
necessary for diversification like variance and covariance of security returns fluctuate over time, and they vary 
between short and long run. Realizing and being able to measure risk are essential inputs for the decision-making 
process, and both depend on context, which vary according to many factors such as the organizational structure 
and social and cultural effects, and for all this complexity, it is plausible to say that the nature, measurement, and 
tolerance of risk and uncertainty remain murky.  This paper is to revisit the concepts of diversifiable and non-
diversifiable risk, expound the portfolio risk technically and with practical examples, and explains the process of 
lending and borrowing at the risk-free rate of return. It also puts the diversification method to measure the 
unsystematic risk against measuring the systematic risk by market beta. It briefly examines the mathematical 
simulation and sensitivity analysis, and mathematically explains choices under risk, ambiguity, and uncertainty. 

1. Diversifiable and Non-diversifiable Risk 

Diversifiable or unsystematic risk is the risk specific to an individual firm, as it is related to its internal 
conditions and circumstances such as lawsuits against the firm, marketing or accounting problems, product defect, 
workers’ strike, problematic contracts, and so on.  It is, therefore, the risk associated with a particular asset or 
project or the risk of an entire financial portfolio in an organizational level.  This type of risk can be reduced or 
even eliminated by the classical remedy of the diversification of assets within the portfolios so that the no risky or 
less risky assets mitigate the risky ones. 

The non-diversifiable or systematic risk is the general and market-related risk that would affect all 
firms and all projects and assets, simultaneously and with no discrimination.  It is associated with the state of the 
economy and structure of markets as well as with national and regional big events such as wars, political unrest, 
natural disasters, and severe weather.  But the most striking impact of such external factors is the impact of those 
economic conditions such as recession, inflation, unemployment, and unusual interest rate fluctuations.   
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Unlike the unsystematic risk, systematic risk cannot be reduced or eliminated by diversification of assets.  
In fact, there is no other way to minimize it or remove its impact.  However, it can be assessed by monitoring how 
a particular asset tends to respond to the market state and its changes.  This is usually addressed by the Capital 
Asset Pricing Model CAPM where the systematic risk is measured by beta (β).  CAPM analysis is not included in 
this paper, but the following shall address in detail the unsystematic risk at the portfolio level and how it can be 
reduced by diversification of assets within a specific portfolio.Figure1 shows how portfolio risk tends to decline, 
as the financial portfolio includes more and more individual assets and securities.   

 
2. Portfolio Risk: 

There are two factors that would determine the risk level in a financial portfolio containing many 
individual assets and securities: 1) How diversified are the assets, since risk has a negative relationship with 
diversification.  2) How correlated are the assets since risk has a positive relationship with correlation of assets.   

But more crucial is the degree and direction of correlation.  Diversification of assets cannot reduce the 
risk level unless the assets are either negatively correlated or at least positively correlated but to a much lower 
degree.  If they are strongly positively correlated, risk cannot be eliminated or reduced by merely diversifying the 
portfolio.  The following Tables show us two pairs of assets, X & Y and Z & W. Variance of the two sets of 
return were individually calculated at the 7th and 12th columns as: 
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The standard deviations of the two sets of return were calculated as: 
 

5
x x 2

x i e i

i 1

(k k ) Pr


   ,  x .046 .214   ,  
5

y y 2

y i e i

i 1

(k k ) Pr


   ,  y .067 .259    

The covariance between the two sets of return cov(x,y) is also calculated at the 13th column as: 
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  , cov(x,y) = .0554 

and finally the correlation coefficient (COR) between the two sets of return is calculated as: 

 x,y

x y

cov(x,y)
COR 

 
,   x,y

.0554
COR

(.214)(.259)
 , CORx,y = 99.9% 

A correlation coefficient, which is large enough to be close to a (+100) would be considered a solid 
indication of a perfectly positively correlated assets.  It means that they exhibit a similar dynamic that makes them 
move together, up and down, in tandem.  This kind of matching pattern would not benefit from diversification in 
risk reduction at all.  The left panel of Figure2 shows such a synchronized movement of the returns of those 
assets. 
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Figure2 

The second set of assets, Z and W, is presented in Table ZW and the same parameters are calculated in the same 
manner they were calculated in the previous table. 

The variances of the assets are at columns 7 and 12: 
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A correlation coefficient of -97.3% shows the opposite case of X & Y combination.   
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It indicatesthat assets Z and W are almost perfectly negatively correlated, which means that the 
returnchanges of these assets go up and down, opposite to each other. 

This is the ideal case to offer the opportunity for these assets to cancel each other out.  If one is down, 
the other is up to compensate.  That is the beauty of diversification.  The combination of such assets in a portfolio 
gives the opportunity to have an optimal impact of diversifying the risk away.  The right panel of Figure2 shows 
how the return patterns act opposite each other in a consistently contrasting manner. 

Combining assets into portfolios would most likely reduce the risk even for those assets that are positively 
correlated.  In the two tables, XY & ZW, we combined asset X and asset Y and obtained an average vector of 
returns for the combination xy.  Also, we combined asset Z and W and obtained an average vector of returns for 
the combination ZW.  The standard deviation test showed that the combination helps reduce risk even for 
combining x and y which are perfectly positively correlated as we have seen.  The standard deviation of the 

combined set XY (xy = -195) is still less than either of the asset taken individually where x = .214, and y = 
.259.  This means that the combined assets showed that it is not as risky as either of the individual assets standing 
alone.  This standard deviation test shows much better results when we combined the negatively correlated assets 
Z and W.  The standard deviation of the combined set ZW is 

(zw = .056) which is much less than either of the assets' standard deviation where z = .1841 and  

w = .1136.  It is a further proof that combining assets into portfolios would increase diversification and 
reduce risk.  However, the extent of risk reduction depends primarily on the degree and sign of the correlation 
between the assets.  In reality, most of the assets are positively 
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Combined Assets zw with Average Returns 
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correlated.  Studies show that on average, randomly selected assets show a correlation coefficient around 
.60.  The lower the positive correlation, the better results of the combination.  

In another yet abstract presentation, Figure3 shows three possible ways to combine two assets in a 
portfolio, two extreme combinations and one common combination.  The assets are: A with an expected return of 

kA and kB and risk level of A, and B with an expected higher return of kB and higher risk level B.  The first 
extreme case of combination occurs at any point along the straight line AB if assets A and B are perfectly 
positively correlated.  This combination cannot benefit much from diversification.  The second extreme case of 
combination occurs at any point along BCA where a zero risk can be achieved with a rate of return equal to kc 
when the allocation of the two assets can be achieved in reverse proportion to their risk levels.  
 
 
 
 
Figure3 
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This combination is the show case for the benefit of diversification.  The third case of combination 
occurs at any point along the curve BA.  It is the most likely case to occur because assets are often neither 
negatively nor positively perfectly correlated.  The correlation would often be in a moderate level and the 

combination of assets can enjoy a wide range of returns from kA to kB for a wide range of risk level from A to B.  
The curve would include all the possible combinations that are better alternatives to any point along the straight 
line AB but lower alternatives to most of the points along BCA which would offer higher rates of return for the 
same level of risk, especially along the segment BD. 

4.  Risk of Two-Asset Portfolio 

Among the major issues addressed by Markowitz in his pioneering study of 1952 is portfolio 
diversification of assets, and the positive outcome on portfolio’s return and risk through the compensatory effect 
of the assets that move in different directions.  The left side of Figure 4 shows what happens if an investor 
decides to invest in two different choices of stocks, Stock I with an expected return of 8% and a low risk 
(represented by the standard deviation of return) of 15%, Stock II which offers a higher return of 12% but at a 
higher risk of 22%.The logical expectation is to calculate the combined return and risk for the mix if we know 
how much investment the investor is willing to dedicate to each of the stocks.  Let's assume that this portfolio 
manager is willing to dedicate 55% of investment to Stock I and 45% to Stock II.  The portfolio rate of return 
would be calculated as the weighted average of two returns:kp = w1k1 + w2k2 ,kp = (.55)(.08) + (.45)(.12),   kp = 
9.8% 

As for the portfolio risk, it would be determined by the standard deviation of the combined assets given a 
correlation between the two assets of .38. 

2 2 2 2w w 2COR (w )(w )
I, II I I II II I, II I I II II

        

 

2 2 2 2(.15) (.55) (.22) (.45) 2(.38)(.55)(.15)(.45)(.22)
I, II

      ,  .0228 15.1%
I, II

    

So the risk level of the combined stocks in an asset is less than the weighted average risk of the two 
individual assets which would have been:(.55)(.15) + (.45)(.22) = l8.2% 

Figure 4 
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Therefore, a combination of assets at Sp would yield a 9.8% rate of return at a reasonable level of risk of 
15.1%.  If we generalize this hypothetical example to the real market with a large number of assets in a larger 
number of combinations and producing a larger number of portfolios, we would get the broken-egg shaped area 
as it is shown on the right side of Figure 4.  It showsall the combinations of assets that are attainable to all 
investors with their different objectives and different risk and return preferences.The following are some major 
observations on this graph:1) The solid line curve represents the diversified portfolios with the highest returns for 
any given risk level between CR and DR.  Markowitz called this curve the "efficient portfolio curve".  It is also 
called the "frontier of risky portfolios".  2)  Point D is the portfolio that yields the highest return (kD) but bears 
the highest level of risk (DR). 3) Point C is the portfolio that yields the lowest return (kC) but enjoys the lowest 
level of risk (CR). 4) Segment DB contains a collection of portfolios that enjoy a tradeoff between risk and return 
in favor of the risk side.  For example, moving from D to B means getting a slightly less return than kD but for 
more reduction in risk level, DR to BR.  Similarly, moving from B to D means gaining a slightly more return than 
kB but carrying more risk BR to DR. 5) Segment AC contains a collection of portfolios that enjoy a tradeoff 
between risk and return in favor of the return. For example, moving from A to C means accepting more reduction 
in return, from kA to kC for less reduction in risk, from AR to CR.  Similarly, moving from C to A means getting 
much higher return for accepting a little more risk, from CR to AR. 6) Segment AB contains all the portfolios that 
exhibit an almost equal tradeoff between risk and return.  In other words, gaining or losing a certain amount of 
return comes with gaining or losing a compatible amount of risk. 7)  Inside the shape, we can observe that moving 
towards the northeast means getting portfolios with higher return and higher risk.  On the contrary, moving 
towards the southwest means getting portfolios with lower return and lower risk. 8) Portfolio F is definitely 
preferred to portfolio G because it yields more return for the same amount of risk. 9) Portfolio E is preferred to 
portfolio G because it enjoys a much lower level of risk for the same rate of return. 

5.  Lending and Borrowing at the Risk-Free Rate of Return 

Let’s assume that an investor wants to split his initial investment between asset A on the efficient 
portfolio curve and the treasury bills which offers a risk-free rate of return equal to 5%.  Suppose that A yields 
12% at a risk level of 15%.  The investor would like to have 60% of his money invested in asset A and 40% 
invested in the treasury bills. 

 
Figure 5 

The investor in this case is lending 40% of his money to the treasury bills.  His rate of return would 
be:(.40)(.05) + (.60)(.12) = 9.2% ,and his level of risk :(.40)(0) + (.60)(.15) = 9% 

He would be at point B on Figure 5.  This means that he could be at any point along the line A Rf 
depending on the proportions of his investment between asset A and the treasury bills. 

Now, let's assume that he borrows at the risk free rate of 5% an amount of money equal to his own 
money and invest the total of his own and the borrowed money in asset A alone.  His return would be:(2)(.12) - 
(.05) = 19%, and his risk would be:(2)(.15) + (.05)(0) = 30% 

He would be at point C which means that he could be at any point along CA depending on how much he 
borrows and how much risk he tolerates. 

6.  Measuring the Systematic Risk by Beta (β) 

Beta (β) is a mathematical tool to measure the systematic undiversifiable market risk.  It is, in this sense, an index 
of the extent to which a security return moves in response to the changes in the overall market.   
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This would make it as a measure of the securities volatility in relation to an average security represented 

by the state of the market.  Market return is an aggregate measure of the return of all traded securities in the 
market at a specific time.  Beta value can be positive or negative.  Generally, it ranges between -2.5 to 2.5.  The 
value of 1.00 denotes the full impact of market risk.  Any individual security with a beta of 1.00 indicates that the 
return pattern of that security moves up and down perfectly with the market return.  The value of zero refers to a 
total independence from the market impact.  A value of more than 1.00, such as 2.00, reveals that the security is 
twice as volatile as the average security in the market.  A negative value says that the asset return pattern moves in 
opposite direction to the market.  Mathematically, Beta is obtained by dividing the covariance between the 
individual security return (ki) and the market return (km) by the variance of market return (km).

i m
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   

In this sense, Beta is a concept of correlation to assess how one security return is correlated with the rest 
in the market.  From another perspective, Beta measures the percentage change in one security return as it 
responds to the changes in the external market return.  It can be, therefore, interpreted as the financial elasticity of 
the change in a given asset relative to market change.  Accordingly, Beta becomes the slope of the regression line 

between the changes in market return and the corresponding response of the asset return.  Beta = β = 
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which is the value of β in the equation of the line.  This says that the asset rate of return follows the 
market return more with it but even more robustly.  Its volatility as one and a half as the volatility of the market 
return.  For example, if the market rate increases by 5%, this asset's rate would increase by 7.5%.We can also 
calculate Beta value by the formula method.  For example, we can calculate Beta for x-corporation given 10 
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Note that βx is just the beta of Asset X.  A portfolio beta would be weighted average of betas for all 
individual assets within the portfolio,  where βp is the portfolio beta, βi is the beta for any individual asset within 
the portfolio, wi is the proportion of asset i out of the entire portfolio that contains n-assets. 

7.  Mathematical Simulation and Sensitivity Analysis 

We have seen some iconic models in the physical world of design and engineering, which are made to 
reduce the potential risks, explore flaws and enhance positive features, as well as estimate costs.  Mathematical 
simulation models are designed to mimic the realities of the business world and deal with their changes.  They 
present yet, another technique that would assist the decision maker in exploring all the possibilities surrounding 
the problem at hand when it comes to dealing with risky and uncertain conditions.  The essential features of the 
real world can be translated into a multivariable model, complete with estimations of the probability distributions 
of the key variables.  The model can be tested repeatedly with random values which are given to the variables in 
each test until a probability distribution and risk for the general model is estimated so that it can be used to 
calculate the expected outcome for any given variables.Let’s assume that we want to estimate the net present value 
of a project and explore the risk involved.  We can simulate the profit model and randomize the values of its 
variables many times, and calculate the probability distribution and the standard deviation so that they become the 
template for estimating the net present value at any risky circumstances.  We can start with a mathematical 

formula to represent the profit as a net cash flow for the t-period 
t( ) :  

t [R C D](1 x) D       

Ris the total revenue, which is equal to the amount of product sold (s) times the product unit price (p).R = s(p),  C
 is the total cost, which is equal to the amount of product sold (s) times the unit cost, including production 
cost (c1) and selling cost (c2).C = s(c1 + c2),  D is the annual depreciation, which is equal to the original depreciable 

cost and initial capital outlay divided by the lifetime of the physical capital asset.
d

D
L

 ,  x is the marginal tax rate, 

where the profit is adjusted accordingly by (1-x).
t 1 2

d d
s(p) s(c c ) (1 x)

L L

 
       

 
.  Now, let’s give 

thesevariables their numerical values:  product sold (s) = 5,000 unit,  product unit price (p) = $15,  production 
cost per unit (c1) = $2.50,  selling cost per unit (c2) = $.50,  original equipment depreciation (d) = $18,000,  
equipment lifetime (L) = 10 years,  marginal tax rate (x) = 36% 

Profit t would be: 

t

8,000 8,000
5,000(15) 5,000(2.50 .50) (1 .36)

10 10

 
       

 
,   t = 38,688 

The $38,688 is the profit earned for the period t.  If we assume that it will be earned in every year of the project 
life for the next 4 years (n=4), then the net present value for the cash flow during the entire period of n would be:

n
t

n 0t
t 1

NPV C
(1 k)


 


  

Given that the risk-free rate of interest (r) is 5% and the firm’s risk premium (Rp) is 7%, then k would be:k = r + 
Rp,  = .05 + .07 = .12.  If the initial cost of the project (C0) is $50,000, then: 

31 2 4
4 01 2 3 4

NPV  C
(1 k) (1 k) (1 k) (1 k)

   
     

    

1 2 3 4

38,688 38,688 38,688 38,688
50,000

(1 .12) (1 .12) (1 .12) (1 .12)

 
     

    
 = [34,543 + 30,841 + 27,537 + 24,587] - 50,000 

= 117,508 - 50,000 = 67,508  

This is one estimate of the net present value of a project.  If this type of estimation is repeated hundreds 
of times using different values of the variables taken from their probability distribution, we can eventually form 
the probability distribution of the general net present value of the project, and we can estimate its mean, as well as 
its standard deviation, as the level of risk.  Suppose that repeated simulation ends up with an expected net present 
value of $65,000 and a standard deviation of 24,000, we can calculate the x-value and obtain the table value that 

refers to the probability of having a negative net present value: 
x x

Z





0 65,000

24,000


     = -2.7 



112                                                      Journal of Economics and Development Studies, Vol. 9, No. 1, March 2021 

 
Looking this value up in the z-table reveals the value of .0035 under the zero column.  It means that the 

zero value is 2.7 standard deviations below the mean and that the probability of the net present value being 
negative (less than zero) is 35%. 

In addition to the full fledge process of the mathematical simulation, there are other related techniques to 
deal with risk but to a less extent.  Sensitivity analysis utilizes the same set of variables and their mathematical 
model but it stops short of obtaining complete probability distribution to the whole set.  It focuses on 
randomizing the value of one key variable in the model in order to test the impact of the single change on the rest 
and establish how sensitive the model is in its response.  For example, a sensitivity analysis can be performed on 
the net present value model by changing the unit price of the product frequently and tracking down the impact of 
such change on the outcome.  Another similar technique is the scenario analysis, which differs from the sensitivity 
analysis only by extending the random change into more than one variable to see the impact of changing a 
number of variables simultaneously.  While sensitivity and scenario analyses are limited, they are more practical 
and more commonly used.  Full simulation is comprehensive and powerful but it is more expensive and time 
consuming, even in the computer age.  It can, for most managers, be reserved for only the major cases. 

8.  Advanced Choice under Risk, Ambiguity, and Uncertainty  

This is the technical approach to the management choice among a finite number of alternatives 
usingmathematical techniques.  It is often possible to quantify economic outcomes used in areas such as policy 
and cost-benefit analysis conditional on uncontrolled events.  Uncontrolled events may include the value of 
unknown parameters in a response function, the effectiveness of a new technology, weather events, etc.  It is to 
illustrate the decision criteria that are available, assuming that conditional economic outcomes can be determined.   

The notion of the cumulative distribution function (cdf) is defined as the area under the probability 
density function (pdf) of arandom variable (rv) to the left of a particular value of the rv.  Hence, it is the 
probability that anrv is less than or equal to that value.  The cumulative distribution function F(x) of a random 

variable X is the probability that X has a value that is less than or equal to x; i.e., F(x) = Pr[X  x] 

For example, if the pdf of X is f(x),
2

22

1 1
f (x) exp (x )

22

 
    

 , then the cdf of X is 

  
x

2

22

1 1
F(x) exp (1 ) dt

22

 
    
 . 

The technique that hasbeen developed to identify conditions under which one risky alternative is 
preferred to another is called the Stochastic dominance.   

8.1. Stochastic dominance 

It is an approach to identify the preferred alternative while making the weakest possible assumptions.  
Generally, stochastic dominance assumes an individual is an expected utility maximizer and then adds further 
assumptions relative to preference.  It relies on the appropriateness of expected utility maximization and the 
underlying assumptions on preference.  It should be mentioned that some experimental decision problems from 
the 1950s and 1960s, such as the Allais Paradox and the Ellsberg paradox, have suggested decision makers don’t 
follow expected utility maximization.  On the other hand, some econometric tests with real-world data have 
tended to support expected utility maximization. The assumptions here are: 1) expected utility maximization, 2) 
two compared mutually exclusive alternatives, 3)probability distribution of a true population. Now, suppose the 
two alternative decisions yield alternative probability density functions for benefit, x; viz., f(x) and g(x). Expected 

utilities, E[U(x)], corresponding to the different decisions are: 
 

The difference in these expected utilities is: 
 

 
Note that the difference is positive when f(x) yields higher expected utility than g(x) and negative otherwise.  If 
positive, f(x) is a preferred gamble to g(x); otherwise, g(x) is a preferred gamble to f(x).   
8.1.1 First-Degree Stochastic Dominance (FSD) 

If we consider , and let u = U(x) and v = F(x) - G(x).  Then, use the integration by 

parts, given that du = U’(x) dx and dv = (f(x) - g(x)) dx , we get: 
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 U(x)[f (x) g(x)]dx U(x)[F(x) G(x)] U'(x)[F(x) G(x)]dx


 

 


      

 U( )[F( ) G( )] U( )[F( ) G( )] U'(x)[F(x) G(x)]dx



             

U( )(1 1) U( )(0 0) U'(x)[F(x) G(x)]dx



         

 = U'(x)[G(x) F(x)]dx



  

Observe that this term is nonnegative if U’(x)  0 and G(x)  F(x). Probability density function f 
dominates probability density function g by first degree stochastic dominance (FSD) when U’(x)  0 if and only 
if the cumulative distribution function associated with f is less than or equal to the cumulative distribution 

function associated with g (i.e., F(x)  G(x) for all (x) and strict inequality holds for at least one x. There are two 
implications of FSD: 1) the mean of f is greater than the mean of g , and 2) for every level of probability, at least 
as much money is made under f as under g.  This is what can be concluded from characterizing the choice 
between two alternatives for every expected utility maximizer that prefers more to less.  
8.2. Second-Degree Stochastic Dominance (SSD) 

If we consider U'(x)[G(x) F(x)]dx



  , then if this expression is positive, f is preferred to g since the 

expected utility under f is greater than the expected utility under g.  
Using integration by parts, let u = U’(x) and let dv = [G(x) - F(x)] dx, and we note that  

du = U (x) and v = [G(t) F(t)]dt.



   So : 

x x

U(x)[G(x) F(x)]dx U'(x) [G(t) F(t)]dt U(x) [G(t) F(t)]dt dx
 

 

 
   

         

Focus on the first term:  
x x

U'(x) [G(t) F(t)]dt U( ) [G(t) F(t)]dt U( ) [G(t) F(t)]dt





  

          

Assume that U’(x)  0 and that 
x

[G(t) F(t)]dt


  0 with strict inequality for some x (the first assumption is 

from FSD; the second assumption is new and is used in signing the second term as well).  This makes 

[G(t) F(t)]dt



  0 and, of course always, [G(t) F(t)]dt




  = 0.  This makes the first term positive.  

However, if we focus on the second term:  
x

U'(x) [G(t) F(t)]dt dx





 

   

In order to guarantee that f is preferred to g the sign of this whole term must be negative (since the whole term is 
subtracted).  Second degree stochastic dominance (SSD) assumes that the second derivative of the utility function 

with respect to x is negative everywhere (assume U (x)  0).  With this assumption, if 
x

[G(t) F(t)]dt


  0 

with strict inequality for at least one x (this was already assumed in signing the first term) then this makes 

[G(t) F(t)]dt



  0 and, of course always, [G(t) F(t)]dt




 = 0.  These assumptions make the second 

term negative.  The minus sign in front of the second term makes it positive.  
Under the assumptions of positive marginal utility (U’(x)  0) and diminishing marginal utility (U”(x)  0), f 

dominates g by second degree stochastic dominance (SSD) if and only if 
x

[G(t) F(t)]dt


  0 for all x with 

strict inequality for at least one x.  
The interpretation of SSD is not difficult.  The area under the cumulative distribution function of X, i.e, 

, up to x is the expected “shortfall” of X relative to x (here “shortfall” refers to the difference between a target 
return (or goal), x, and the outcome).  f dominates g according to SSD if and only if the expected shortfall under g 
relative to target return x is greater than or equal to the expected shortfall under f relative to target return x for all 
possible target returns with “greater than” holding for at least one target return.  This interpretation suggests that 
a risk averse decision maker ranks gambles by how well the gamble is expected to meet a goal (in fact, any goal).  

8.2.1Applications of SSD Conditions 
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Recall that stochastic dominance analysis uses conditions on the cumulative distribution functions 

associated with different decisions to derive the set of decisions that can be ruled out as inefficient relative to 
other decisions in terms of expected utility.   

The conditions provided by second degree stochastic dominance, which is the work horse among 

stochastic dominance criteria, are that decision  is superior to decision if and only if
k i

x

A A[F (t) F (t)]dt



 0 for all x with strict inequality for at least one x where  the cumulative distribution function associated 

with decision .  The left pane of the following Table depicts a policy decision featuring decisions ( ), events (

), event probabilities ( ), and outcomes conditional on each decision and event (V( , )) where the latter 

are shown in the body of the table.    

Event 
Probability 
Policy 

 
E1 
.2 

 
E2 
.5 

 
E3 
.3 

Event 
Probability 
Policy 

 
E1 
[.15, 25] 

 
E2 

[.4, .6] 

 
E3 
[.25, .35] 

Event 
Probability 
Policy 

 
E1 
? 

 
E2 
? 

 
E3 
? 

A1 .8 .9 1.0 A1 .8 .9 1.0 A1 .8 .9 1.0 

A2 .8 1.1 1.3 A2 .8 1.1 1.3 A2 .8 1.1 1.3 

A3 .8 .95 1.4 A2 .8 .95 1.4 A3 .8 .95 1.4 
 

8.3. Choice under Ambiguity 

If the likelihood of uncontrolled events can be determined up to a convex set (e.g., ranges of probability 
values are known), then there is said to be ambiguity about the risks associated with decision; i.e., decision making 
under ambiguity.  This case represents a middle ground between the risk and uncertainty environments.  For such 
cases, an emerging decision criterion known as maxmin expected utility (Gilboa and Schmeidler, 1989) suggests 
maximizing the minimum expected utility over the convex set; i.e. with linear utility, decision Ai is superior to 
decision Ak 

if i j k jMin E[V(A ,E )] Min E[V(A ,E )]

(P S) (P S)



 

where P is a vector of probabilities associated with uncontrolled 

events and S is a convex set.  The right pane of the Table above shows the decision problem  
under ambiguity.  The maxmin expected utility optimal decision is given by 

i

Maximize

A

 ( j i j jMin 9V(A ,E )p ;

(P)

 subject to 
j j j j jp 1,  p [a ,b ] j.      The maxmin expected utility 

criterion generalizes both expected utility maximization and the maximin criterion in the sense that both criteria 
are special cases of maxmin expected utility.  To see this, observe that the maxmin expected utility optimal 
decision corresponds to expected utility maximization when S consists of a single point and corresponds to the 
maximin criterion when S does not restrict the ranges of possible probabilities (S is a unit n-simplex).  Application 

of maxmin expected utility to the right pane of  theTable shows  to be the optimal choice.  

8.4. Choice under Uncertainty 

Predicting or determining the likelihood of uncontrolled events is often difficult and can involve 
significant time and expense.  In cases where the latter are prohibitive, often referred to as decision making under 
uncertainty, there are several approaches.  Traditional decision criteria, including the maximin, maximax, Laplace, 
and Hurwicz criteria (Render et al., 2009), may be possible.  While none of these criteria require knowledge of 
uncontrolled event probabilities for application, the first two represent polar extremes in terms of optimism and 
pessimism while the latter two require information similar to probabilities in order to be applied.  

The Laplace criterion has come under criticism in the philosophy literature due to what has become 
known as the  paradox of the envelopes.  Here is a statement of that decision problem followed by three decision 
tables which apply the Laplace criterion to the problem and achieve three different optimal solutions.  

Situation :  Two sealed envelopes (yours and theirs).  One contains twice the money of the other.  You 
can keep yours or switch.  What should you do?  
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Envelopes sealed 

Event → E1 E2 Expected Payoff 

Probability→ 1
2

 1
2  

←By Laplace 

Act↓ Payoff↓ Payoff↓ Optimal Act: Indifferent 

Keep x 2x 3
2

x 

Switch 2x x 3
2

x 

Open yours; find $x 

Event → E1 E2 Expected Payoff 

Probability→ 1
2

 1
2  

←By Laplace 

Act↓ Payoff↓ Payoff↓ Optimal Act: Switch 

Keep x x x 

Switch 2x 3
2

 5
4

x 

 
Open other: find $x 

Event → E1 E2 Expected Payoff 

Probability→ 1
2

 1
2  

←By Laplace 

Act↓ Payoff↓ Payoff↓ Optimal Act: Keep 

Keep 2x x
2

 5
4

x 

Switch x x x 

 
Putting aside the questions raised by the paradox of the envelopes, each of the criteria for decision making under 
uncertainty can be interpreted in the context of Table 12.LAST.1.  The 

 maximin optimal decision is found as the solution to 
i j

i j

Maximize  Min V(A ,  E );

A E

 the maximax optimal 

decision is found as the solution to 
i j

i j

Maximize  Max V(A ,  E );

A E

The Laplace optimal decision is found as the 

solution to j i j

i

Maximize V(A ,  E );

A

  the Hurwicz optimal decision (given a value for w  [0, 1]) is found as the 

solution to 

i

Maximize

A

 (

j

w Max

E

V(Ai, Ej0 + (1-w)    

i j

j

Min V(A ,  E )

E

0.  It is easily verified that application of these criteria to the information in the center pane of 

Table 1 gives the following optimal decisions:  (maximin, A1, A2, A3)   (maximax, A3); (Laplace, A3), (Hurwicz (w 
= .7), A3). 
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