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Abstract 
 
 

This paper analyzes how the information contained in the disaggregate components 
of aggregate inflation helps improve the forecasts of the aggregate series. Direct 
univariate forecasting of the aggregate inflation data by an autoregressive (AR) 
model is used as the benchmark with which all autoregressive (AR), moving average 
(MA) and vector autoregressive (VAR) models of the disaggregates are compared. 
The results show that directly forecasting the aggregate series from the benchmark 
model is generally superior to aggregating forecasts from the disaggregate 
components. Additionally, including information from the disaggregates in the 
aggregate model rather than aggregating forecasts from the disaggregates performs 
best in all forecast horizons when appropriate disaggregates are used. The 
implication of these results is that better inflation forecasts for Ghana are produce 
by using information from relevant disaggregates in the aggregate model rather than 
direct forecasts of the aggregate or aggregating forecasts from the disaggregates. 
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1. Introduction 
 

Central banks all over the world are charged with the responsibility of 
maintaining low and stable prices in their countries.  
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To achieve their goals, the central banks adopt monetary policy frameworks 

that they believe address local inflation problems. Many of these central banks adopt 
inflation targeting as their monetary policy framework, which makes accurate inflation 
forecasts indispensable. Apart from the use of inflation forecasts by central banks and 
other macroeconomic policy authorities, consumers, businesses, and other policy 
oriented institutions need inflation forecasts for planning purposes. Additionally, 
other macroeconomic policies depends, to a great extend, on inflation forecasts. The 
standard practice, in the literature, is that inflation is calculated for sectors and other 
disaggregate components but forecasting in many cases has been performed using the 
aggregate series.  

 
A recent question arising in the literature is whether aggregate inflation 

forecasts can be improved by using information from the subcomponents. In 
attempts to answer this question, literature has developed on the use of information 
from sectoral disaggregates of inflation series (seeAron and Mueller(2008), de Dois 
Tenaet al.(2010), and Hendry  and Hubrisch(2005)). These studies, however, 
concentrate on disaggregation by product sectors. The concentration of the studies on 
product categories and the neglect of spatial categories like regions and rural – urban 
classifications perhaps are based on the implicit assumption of the Law of One Price, 
which assumes that product markets are efficient. While these assumptions may hold 
true for the developed economies, spatial heterogeneity in price developments may be 
significant in developing and emerging market economies where information is 
asymmetric due to poor road and telecommunication infrastructure. 

 
Although theoretical literature is clear on the conditions under which 

forecasting aggregate series from the sub-components will outperform the direct 
forecasting of the aggregate series, empirical studies have reached mixed conclusions. 
This study extends the previous studies by considering disaggregation across regions, 
rural – urban as well as product groups and applies the test to data from a developing 
economy, Ghana. Although previous studies have aggregated forecasts from the 
disaggregates, this study tests whether including the disaggregates in the aggregate 
model improves forecasts of the aggregate series. Also, the study investigates which 
form of disaggregation makes a more significant difference to the aggregate forecast 
and tests whether pooling forecast from both dimensions can make improve 
aggregate forecasts.  
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Apart from using the rural – urban and regional forecasts to compare forecast 
improvements or otherwise of the series, forecasts of the components are important 
for regional and business planning. 

 
The rest of the paper is structured as follows; section 2 reviews of the existing 

literature on the subject. Section 3 discusses the methodologies used in the analysis of 
the data while section 4 discusses the empirical results. Section 5 states the 
conclusions and recommendations. 

 
2. Literature Review 

 
The issue of whether micro models explain and/or forecast macro/aggregate 

series better started with Theil(1954) and expanded later by Grunfeld and 
Griliches(1960). Series of studies have been done after these pioneering works, which 
identify three alternatives to using the disaggregate components to improve on the 
direct forecasts of aggregate series. One approach is to model the subcomponents 
independently and aggregate the forecast from the independent models based on a 
weighting scheme.  A second approach is to model the subcomponents jointly in a 
vector autoregression (VAR) and the forecasts of the subcomponents from the VAR 
are aggregated into an aggregate forecast. A third approach is to use the disaggregate 
components in the aggregate model and forecast the aggregate directly. 

 
Grunfeld and Griliches(1960)show, by comparing Rଶ from OLS regression 

from aggregate variable and composite Rଶ calculated from Rଶ ′s of OLS regressions of 
individual components, that there is no gain in explaining an aggregate variable by 
aggregating the results of the components. A formal test for Grunfeld and 
Griliches(1960) procedure for discriminating between the composite model and the 
aggregate model stated in Pesaran et al.(1989) as choosing the micro models approach 
if the hypothesis H଴: eୡ ′eୡ < eୟ ′eୟ holds, where eୡ ′eୡ is the composite sum of square 
error computed from the micro models and eୟ ′eୟ is the sum of square error from the 
aggregate model. Grunfeld and Griliches(1960)therefore conclude that if the data 
generating process at the micro level in not known, it is better to forecast the 
aggregate series directly. Building on this, Pesaranet al.(1989) note that Grunfeld and 
Griliches(1960) procedure suffers from finite sample bias and develops a choice 
criterion, and a test of perfect aggregation, for discriminating between aggregate and 
disaggregate models.  
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Pesaranet al.(1989)test corrects for the finite sample bias and account for the 

contemporaneous correlation among the micro models. This test is further 
generalized by van Garderen et al.(2000) for application in non-linear models. 

 
Pesaranet al.(1989)’s application of their tests to employment functions for the 

UK economy disaggregated by 40 industries and the manufacturing sector 
disaggregated by 23 industries find that the disaggregated model fits better than the 
aggregate model for the whole economy but not for the manufacturing sector. They 
however interpret the performance of the aggregate model in the case of the 
manufacturing sector as a misspecification of the aggregate model. 

 
Kohn(1982)andLutkepohl(1984) consider the problem in time series 

forecasting setting and give a set of conditions under which a linear combination of 
the components of an aggregate series can forecast the aggregate series from its past. 
According to these studies, if x୲ is a k −dimensional (i.e. k components of an 
aggregate series) stationary process with y୲ = dx୲ (the aggregate series) where 
d = (dଵ, dଶ … d୩) is a k −dimensional vector of weight, let F be an m × k matrix 
with rank m and the first row of the k −dimensional d, y୲ is also stationary and both 
x୲ and y୲have MA representations x୲ = Ψ(B)v୲ and y୲ = Φ(B)u୲ respectively where 
v୲ is k −dimensional and u୲m−dimensional vector of white noise. The optimal h −
 step forecasts, as laid out in Lutkepohl(1984), are  x୲(୦) = ∑ Ψ୦ା୧v୲ି୧∞

୧ୀ଴  and 
y୲(୦) = ∑ Φ୦ା୧u୲ି୧∞

୧ୀ଴  with their mean square forecast errors ∑ (h)୶  and ∑ (h)୷  
respectively, generally ∑ (h)୶ − F∑ (h)F′୷  is positive definite and zero if and only if 
FΨ(B) = Φ(B)F. These conditions mean that generally, pooling forecasts from sub-
components of contemporaneously aggregated series outperforms direct forecast of 
the aggregate series if the data generating process is known. Kohn(1982)further adds 
that “if x୲ is an ARMA process, then so is y୲ and has the same AR and MA orders as 
x୲ and if the moving average polynomial of x୲ has all its roots on or outside the unit 
circle, then the same holds for y୲”. In a detailed review of the early literature on 
combining subcomponent forecasts into aggregate forecasts Clemen(1989) concludes 
that “forecast accuracy can be substantially improved through the combination of 
multiple individual forecasts”. The later literature, however, is mixed on the subject. 

 
As noted by Hendry  and Hubrisch(2010) these methods “focus on 

disaggregate forecasts rather than disaggregate information” and suggest an approach 
that uses the disaggregate components in the aggregate model.  
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They find that forecasting aggregates directly using its past information or 
including disaggregate information in the aggregate model outperforms aggregate 
forecasts that are derived from aggregating the forecasts from the individual 
subcomponents. This supports Zellner and Tobias(2000) who find that aggregating 
forecasts from disaggregates outperforms direct forecast of the aggregate if the 
aggregate is not included in the disaggregate model. Hendry  and Hubrisch(2010)also 
recommends dimension reduction by first combining the disaggregate variables and 
then include the aggregate information in the aggregate model. This reduces 
estimation uncertainty and mean square forecast error. 

 
While the theoretical literature on the issue of forecasting the aggregate 

directly or through the subcomponents is conclusive that indirectly forecasting the 
aggregate series from the subcomponents performs better when the data generating 
process is known, empirical literature is mixed. In an earlier work, Hubrisch(2003) 
uses both univariate and multivariate linear time series models to forecast euro area 
inflation by aggregating the forecasts from the sub components and conclude that 
aggregating forecasts by component does not necessarily help forecast year-on-year 
inflation twelve months ahead. Hendry  and Hubrsch(2005)) later investigate why 
forecasting the aggregate using information on its disaggregate components improves 
forecast accuracy of the aggregate forecast of euro area inflation in some situations, 
but not in others and conclude that more information can help, more so by including 
macroeconomic variables than disaggregate components. 

 
Hendry  and Hubrisch(2005)find that multivariate models provide little costs 

or benefits compared to direct forecasts but as the forecast horizon increases 
aggregating forecasts from the disaggregates performs worst. They also find that 
including the disaggregates in a VAR with the aggregate series improves the forecasts 
of the aggregate series. The overall conclusion from Hendry  and Hubrisch(2005) is 
that “the theoretical result on predictability that more disaggregate information does 
help does not find strong support in this forecasting context”. 

 
Using vector equilibrium correction models Aron and Mueller(2008) evaluate 

the advantages of forecasting South African inflation data by aggregating projections 
from different sectors and geographical areas and find that inflation forecast can 
always be improved by aggregating projections from different sectors and 
geographical areas.  
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They, however, emphasize that both levels of disaggregation are required in 

order to obtain a significantly better inflation forecast. Zellner and 
Tobias(2000)experiments also provide some evidence that improved forecasting 
results can be obtained by disaggregation. Benalal et al.(2004)using the euro area 
inflation find that the direct forecast of the aggregate inflation provides better 
forecasts than indirectly forecasting from the subcomponents for 12- and 18-steps-
ahead forecasts, but the results are mixed for shorter horizons forecasts. 

 
Fritzer et al.(2002)compare forecast performance from independent ARIMA 

models of the aggregate and disaggregates and VAR models for Australian inflation 
and find that VAR models outperform aggregation of forecasts from the independent 
ARIMA models for long-term forecasts horizons. For ARIMA models, they find that 
the indirect approach of aggregating forecasts from the individual ARIMA models is 
superior to the direct forecasts from the ARIMA model for the aggregate their results 
are mixed for the forecasts from the VAR. 

 
3.  Methodology 

 
This section outlines the methodologies used in this study. The models for 

forecasting the inflation series are discussed followed by forecast pooling and 
evaluation methods and a description of the data and their sources. Finally, the 
approach used to reduce the data into a smaller number of variables is discussed. 

 
3.1 Models 

 
The method used in selecting which model performs best follows Hendry  

and Hubrisch(2010) in which five different models are used to forecast the US 
aggregate inflation series and the forecast performances compared using root mean 
square forecast error.  In this paper, I use the following the models from Hendry  and 
Hubrisch(2010).  

 
i. An autoregressive (AR) model of the aggregate inflation series 
ii. A moving average (MA) model of the aggregate inflation series 
iii. Aggregating forecasts from independent autoregressive (AR) models of all the 

subcomponents (regions, sectors and rural-urban components) into aggregate 
forecasts 
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iv. Aggregating forecasts from independent moving average (MA) models of all the 
subcomponents (regions, sectors and rural-urban components) into aggregate 
forecasts 

v. Modeling all the subcomponents jointly in a vector autoregression (VAR) and 
aggregating the individual forecasts from the VAR into an aggregate forecast. 

vi. Including the all subcomponents in a vector autoregression (VAR) with the 
aggregate series and forecasting the aggregate series form the VAR.  

 
3.2 Granger Causality Tests 

 
This section outlines the procedure used in testing whether the information 

contained in one series helps in forecasting another series based on Granger(1969). As 
defined by Judge et al.(1988) “a variable y1t  is said to be Granger-caused by a variable 
y2t  if the information in the past and present y2t  helps to improve the forecasts of 
y1t variable”. This definition is operationalized in a bivariate vector autoregression p, 
VAR(p). 
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y1t does not Granger-cause y2t  if and only if q21 j = 0( j =1,..., p) and y2t does 

not Granger-cause  y1t if and only if q12 j = 0( j =1,..., p) (Judgeet al.(1988)). 

 
 
 
 
 
 
 
 
 
 
  



534                                Journal of Economics and Development Studies, Vol. 2(2), June 2014             
 

 
3.3 The AR and MA Model 

 
Forecasting of the aggregate series using autoregressive (AR) model is set as 

the benchmark with which all the other models are compared. The autoregressive 
(AR) representation of a stationary time series yt  assumes that the current level of the 
series yt  is a weighted average of the previous levels and an error.  The general form 
of an autoregression of order p , AR( p) , for a univariate variable yt  is 

 
F (L)yt =d +et  

whereF (L) =1-f1L -f2L2 - ...-fpLp
, L  is the lag operator and 

.  
 
The moving average representation, on the other hand, assumes that yt  is a 

weighted average of the current and previous errors in the series. The general form of 
an MA(p)  is 

 
yt = m +Q (L)et  
 
whereQ (L) =1-q1L -q2L2 - ...-qpLp , L  is the lag operator and 

 
 
These general forms of the models are applied to the aggregate inflation series 

and the subcomponents individually and the optimal lags for the final models are 
selected based on Akaike Information Criterion (AIC). 

 
3.4 The VAR Models 

 
In order to test if including the disaggregates in a model with aggregate or 

aggregating forecasts from the disaggregates improve the forecasts of the aggregate, 
many vector autoregressions are run with the aggregate series and the 
subcomponents. Let xt  be a k -  dimensional vector, an unrestricted VAR( p ) 
specification for xt  is of the form 
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A(L)xt = m +et  
 
where A(L)  is a k ´ k  matrix of coefficients,  

A(L) = I -A1L -A2L2 - ...-ApLp  and . Different forms of the VARs 

are estimated with and without the aggregate and the results compared with the 
benchmark AR model. Optimum lag selection for the VARs is also based on Akaike 
Information Criterion (AIC). Granger causality tests are also done to determine 
predictive information content of the disaggregates in the aggregate. Also, in order to 
determine how the variables enter the models, unit root test are conducted using 
Augmented Dickey-Fuller tests. 

 
3.5 Forecast Pooling and Evaluation 

 
The aggregate consumer price index (CPI) is a weighted sum of all its 

subcomponents.  Since the forecasts are performed for the inflation series rather than 
the consumer price index (CPI), the expenditure weights used in aggregating the CPI 
are not appropriate for aggregating the inflation series. In the following, I derive time-
varying weights that are appropriate for aggregating the subcomponent forecasts for 
comparison with the direct forecast of the aggregate inflation series.  

 
Let yt  be the aggregate price level (CPI), which is a weighted aggregate of two 

subcomponents x1t  and x2t  with constant weights a 1 and a 2  respectively. Then  
 
yt =a1x1t +a 2x2t  

 

Inflation is percentage change in CPI over time. Define aggregate inflation as 

 
aggrt =

y
y

 and the inflation for subcomponent i  as 
 
compi =

xi

xt

 where 
 
y = dyt

dt
and 

 
xi =

dxit

dt
 therefore  

 
 

y
yt

=
a1 x1 +a 2 x2 t

a1x1t +a 2x2 t
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 aggrt =w1tcomp1t +w2tcomp2 t  
 
w1t and w2t  are time-varying weights that are shares of each component in the 

aggregate inflation series and are functions of both the aggregate series and the 
subcomponent CPIs and compit   is inflation calculated from the ith  subcomponent. 
For a CPI of n  sectors 

 

yt = a ixit
i=1

n

å  and the aggregate inflation series is 

aggrt = witcompit
i=1

n

å  

 
 In-sample forecasts are aggregated using the weights derived above. 

Consistent with Hendry  and Hubrisch(2010), out-of-sample forecasts are aggregated 
using the last weights from the sample since the future weights cannot be known at 
the time of forecast. 

 
Forecast evaluation of the alternative models, that is, pooled forecasts and 

direct forecasts, is based on the Root Mean Square Forecast Error (RMSFE) defined 
as; 

 

 RMSFE =
1
F

et
t=1

F

å  

 
whereet = yt+h - ŷt+h , yt+h  and ŷt+h  are the actual and forecast series 

respectively and F is the out-of-sample number of observations retained for forecast 
evaluation. ŷt+h are obtained from recursive estimation of the models. These RMSFEs 
is used to judge the models’ performance where lower RMSFE means better 
performance. 
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3.6 Data Sources and Description 
 
Monthly data on Ghanaian Consumer Price Index (CPI) and inflation series 

are collected from Prices Section of Ghana Statistical Service. The sector classification 
of the series is done according to the level 1 of United Nation’s “Classification of 
Individual Consumption by Purpose” (CIOCOP). This is a 12-sector classification 
that is made up of food and non-alcoholic beverages; alcoholic beverages, tobacco 
and narcotic; clothing and footwear; housing, water, electricity, gas and other; 
furnishings, household equipment etc.; health; transport; communications; recreation 
and culture; education; hotels, cafés and restaurants; and miscellaneous goods and 
services. This sector classification is further grouped into food and nonfood sectors. 
The series are also classified into rural-urban and by administrative regions of Ghana. 

 
 Two regions, Upper East and Upper West, are merged into one for the 

purpose of the series publications so that we have nine regions instead of ten. The 
aggregate series is a weighted index of the subcomponents with the sector, regional 
and rural – urban weights derived from household expenditure patterns recorded in 
Ghana Living Standard Surveys (GLSS), a household expenditure survey that is 
conducted every five years in Ghana.  

 
The sample data for the CPI cover the period 1997:9 to 2011:9 for the 

aggregate series and the subcomponents, which gives 169 data points. The inflation 
series cover 1998:9 to 2011:9 giving 157 data points for the study. The starting point 
of the sample necessitated by data availability from Ghana Statistical Service 

 
3.7 Reduction of the Series 

 
Given the relatively short sample with 12 sector and 9 regions, the estimation 

of VAR of such dimension will suffer from lack of degrees of freedom, so the 
estimation for the sector series is done using the two-sector classification of food and 
nonfood series. The estimation for the urban – rural models is also done using the 
published series. The problem, however, is with the regional series where there are 
nine regions.  This problem is solved by first pooling the series of contiguous regions 
to have smaller number of variable in the VARs. 
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We group the regional data into three zones based on contiguity. South zone 

is made up of Western, Central, Greater Accra and Volta regions (the regions with 
coast lines); middle zone is made up of Eastern, Ashanti and BrongAhafo regions; 
and north zone is made of northern region, upper east and upper west. The series 
generated for these zones are weighted series based on GLSS expenditure weights 
used by Ghana Statistical service in aggregating the regional series into the aggregate 
national series.  

 
4. Empirical Results 

 
This section presents the empirical results of the models developed earlier. It 

analyzes whether including additional information from subcomponent in modeling 
aggregate inflation improves forecast results of the aggregate series.  
 

These results are also compared with the results of aggregating forecasts from 
the subcomponents and the benchmark model. We start with the time series 
characteristics of the data so as to decide whether the series enter the models at their 
levels or at their first differences.  

 
4.1 Descriptive Statistics 

 
The descriptive statistics in Table 1 show that the inflation series are not 

different in terms of the average and volatility. On average, inflation is highest in the 
non-food sector over the period with the food sector recording the lowest average 
inflation among all the subcomponents considered. The food inflation series happens 
to be the most volatile while the non-food series is the least volatile among all the 
subcomponents.  

 
Table 1: Descriptive Statistics 

 
4.2 Time Series Characteristics of the Series in the Dataset 

 
Since the ways the series are modeled depend on their time series 

characteristics, I investigate the series for their order of integration.  

 AGGR FOOD NFOOD URBAN RURAL SOUTH MIDDLE NORTH 
 Mean 18.46 16.91 20.13 18.81 18.13 18.79 17.96 19.07 

 
Std. Dev. 

13.54 17.72 10.22 13.05 13.65 13.57 13.85 14.49 

Observations 157 157 157 157 157 157 157 157 
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The characteristics of the series are not clear from the visual examination of 
the graphs in Figure 1, so Augmented Dickey-Fuller (ADF) tests are used to 
determine whether the series have unit roots. Table 2.2 shows the results of the ADF 
tests and apart from the north series, all the series are stationary at 5 percent level of 
significance. This means that the series enter the models at their levels except the 
north series. Even though the north series is not stationary, including the first 
difference in the models do not produce any different result from including it at the 
level. I therefore treat the north series as all the other series and present the results for 
the levels of all the series. Similarities of the graphs also suggest that their 
characteristics should not be different. 

 
Figure 1: Graphs of the Level of the Series in the Dataset 
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Table 2: Unit Root Tests of the variables in the Data (ADF p-values) 

 
4.3 Weights 

 
The published weights from Ghana Statistical Service suggests that the weights 

are constant over the sample period but analysis of the data shows that aggregating the 
components with the published weights do not produce the same aggregate series as 
published. I, therefore, compute average ex-post weight for the sample period. The ex-
post weights are regression coefficient from the regression of the aggregate series on 
respective components corrected for serial correlation. These weights are normalized 
to sum to 1 and the ex-ante weights are the published weights. Table 3 shows the ex-
post weights, normalized ex-post weights and the ex-ante weights. A major observation 
is the reversal of the weights for the rural-urban series, which weights the urban series 
more that the rural series ex-ante. The normalized ex-post weights are used in 
calculating the time-varying weights for aggregating the forecasts. The use of these 
weights as opposed to the ex-ante weights does not change the results significantly 
enough to change the conclusions. 
  

 No. of lags p-value 
Aggregate 12 0.0388 
Food 12 0.0301 
Nonfood 13 0.0378 
Urban 12 0.0223 
Rural 13 0.0247 
South 12 0.0318 
Middle 12 0.0136 
North 12 0.1522 
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Table 3: Weights for Aggregating Forecasts 
 

 Ex-post Normalized Ex-ante 
Urban-rural    
Urban 0.448850 0.455834 0.535058 
Rural 0.535828 0.544166 0.464942 
Total 0.984678 1.000000 1.000000 
Sectors    
Food And Non-Alcoholic Beverages 0.492863 0.492788 0.449084 
Alcoholic Beverages, Tobacco and Narcotic 0.046323 0.046316 0.022299 
Clothing and Footwear 0.111954 0.111937 0.112855 
Housing, Water, Electricity, Gas and Other 0.059017 0.059008 0.069844 
Furnishings, Household Equipment and Rou 0.073029 0.073018 0.078266 
Health 0.012603 0.012601 0.043276 
Transport 0.054722 0.054714 0.062086 
Communications 0.004378 0.004377 0.003133 
Recreation and Culture 0.031762 0.031757 0.030439 
Education 0.006419 0.006418 0.01597 
Hotels, Cafés and Restaurants 0.073856 0.073845 0.082825 
Miscellaneous Goods and Services 0.033227 0.033222 0.029924 
Total 1.000153 1.000000 1.000000 
Regions    
Western 0.115404 0.115448 0.115603 
Central 0.066974 0.066999 0.06953 
Greater Accra 0.240317 0.240408 0.242125 
Eastern 0.093875 0.09391 0.09248 
Volta 0.099928 0.099966 0.102775 
Ashanti 0.22458 0.224665 0.223353 
BrongAhafo 0.077525 0.077554 0.076107 
Northern 0.049047 0.049065 0.048918 
Upper 0.031973 0.031985 0.02911 
Total 0.999623 1.000000 1.000000 

 
4.4 Granger Causality Tests 
 

Table 4 is the result of Eviews’ pairwise Granger causality tests that tests 
whether an endogenous variable can be treated as exogenous in a particular equation. 
For each equation in the VAR, Table 4 shows chi-square statistics for the joint 
significance of each of the other lagged endogenous variables in that equation in 
column 2, degrees of freedom (df) in column 3 and p-values in column 4. The statistics 
in the last row (All) are for the joint significance of all other lagged endogenous 
variables in the equation.  
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The results from Table 4 show that food and nonfood series Granger-cause the 

aggregate series individually and jointly and there is a feedback from the aggregate 
series to nonfood but not to food series. The urban and rural series do not Granger-
cause the aggregate series either individually or jointly. The aggregate series, however, 
Granger-cause the urban series. For the regional series, there is a strong joint Granger 
causality from the disaggregates to the aggregate series but none from the individual 
series. Feedback runs from the aggregate only to the north series. These results indicate 
that the food and nonfood series individually and jointly provide much information in 
forecasting the aggregate series but the urban and rural series do not provide much 
information in forecasting the aggregate series as the other disaggregates, either 
individually or jointly. The joint information contained of the regional series helps 
forecast the aggregate series but the individual series do not provide enough 
information to forecast the aggregate series. 
 

Table 4: VAR Granger Causality/Block Exogeneity Wald Test between the 
aggregate and the disaggregate series 

 

 
 

Excluded Chi-sq df Prob. 
Dependent variable: AGGREGATE    
FOOD 29.60471 12 0.0032 
NONFOOD 29.79406 12 0.0030 
All 60.55712 24 0.0001 
Dependent variable: FOOD    
AGGREGATE 15.17709 12 0.2319 
NONFOOD 22.73118 12 0.0301 
All 49.19304 24 0.0018 
Dependent variable: NONFOOD    
AGGREGATE 27.50577 12 0.0065 
FOOD 33.31102 12 0.0009 
All 89.18211 24 0.0000 
Dependent variable: AGGREGATE    
URBAN 13.71157 12 0.3195 
RURAL 16.52092 12 0.1685 
All 25.69682 24 0.3687 
Dependent variable: URBAN    
AGGREGATE 26.32206 12 0.0097 
RURAL 19.85558 12 0.0699 
All 50.29478 24 0.0013 
Dependent variable: RURAL    
AGGREGATE 12.46291 12 0.4093 
URBAN  7.822618 12 0.7988 
All 43.4988 24 0.0087 
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Table 4 (Continued): VAR Granger Causality/Block Exogeneity Wald Test 
between the Aggregate and the Disaggregate Series 

 
 Chi-sq df Prob.  
Dependent variable: AGGREGATE    
SOUTH 16.17355 12 0.1834 
MIDDLE 17.03393 12 0.1483 
NORTH 14.67319 12 0.2598 
All 66.27316 36 0.0016 
Dependent variable: SOUTH    
AGGREGATE 14.69423 12 0.2586 
MIDDLE 15.8875 12 0.1964 
NORTH 14.00068 12 0.3007 
All 92.91287 36 0.0000 
Dependent variable: MIDDLE    
AGGREGATE 11.73318 12 0.4673 
SOUTH 12.33768 12 0.4190 
NORTH 10.65658 12 0.5586 
All 104.3503 36 0.0000 
Dependent variable: NORTH    
AGGREGATE 27.12709 12 0.0074 
SOUTH 28.88582 12 0.0041 
MIDDLE 28.59004 12 0.0045 
All 137.462 36 0.0000 
 
4.5 Results of the Various Models and Model Comparison 

 
Three main models are estimated in various forms; an autoregressive (AR) 

model of the aggregate series and the subcomponents, a moving average (MA) of the 
aggregate series and the subcomponents and a vector autoregressive (VAR) model of 
the aggregate and the different subcomponents or all the subcomponents. The VARs 
are labeled by the variables that enter it, for example VAR_aggr_food means a VAR 
with the aggregate series and the food series as shown in Table 5. The results from the 
comparison of the Root Mean Squared Forecast Errors (RMSFE) from Table 5 show 
that, for all the categories considered, the benchmark autoregressive (AR) model of 
the aggregate inflation series outperforms aggregate forecasts that are obtained from 
aggregating forecasts from the subcomponents except for the 1-step-ahead forecasts 
for the product sectors where aggregating the forecasts from the subcomponents 
perform marginally better.  
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For the moving average (MA) models, the direct forecasts are better in all the 

steps except for the regions where aggregating the forecasts performs better for the 1-
step-ahead.  

 
Including additional information from the subcomponents generally performs 

better for all the models at 1-step-ahead forecasts. The forecasts are, however, less 
accurate when only food, urban or south series is included in the aggregate model 
individually, even for the 1-step-ahead forecasts. These results imply that the 
subcomponents help in producing better short-term forecasts of aggregate inflation if 
the right subcomponents or their combinations are used in the aggregate model. For 
the product sector, including the nonfood series improves the forecasts most, while 
including the rural series improves the forecasts most in the case of the urban-rural 
classification. In the case of the regional classification, including all the 
subcomponents improves the forecasts most. 

 

Table 5: Root Mean Square Forecast Error (RMSE) for year-on-Year Inflation* 

 

* Direct forecasts are the forecasts of the aggregate series from a particular model, and 
the indirect forecasts are the aggregate forecasts that are obtained from aggregating 
forecasts from the disaggregates  

RMSFE 1-step 6-step 12-step 
 Direct Indirect Direct Indirect Direct Indirect 
Sectors       
AR** 0.137 0.131 0.341 0.739 0.647 1.346 
MA 0.188 0.217 1.042 0.810 1.119 0.810 
VAR_aggr_food_nonfood 0.077 0.095 0.676 0.706 1.290 1.356 
VAR_aggr_food 0.151  0.553  0.755  
VAR_aggr_nonfood 0.061  0.661  1.254  
VAR_food_nonfood  0.093  0.700  1.309 
       Urban-rural       
AR 0.137 0.158 0.341 0.783 0.647 1.404 
MA 0.188 0.207 1.042 0.837 1.119 0.837 
VAR_aggr_urban_rural 0.098 0.170 0.736 0.801 1.522 1.708 
VAR_aggr_urban 0.190  0.605  0.885  
VAR_aggr_rural 0.067  0.654  1.300  
VAR_urban_rural  0.165  0.747  1.725 
       Regions       
AR 0.137 0.153 0.341 0.727 0.647 1.308 
MA 0.188 0.123 1.042 0.820 1.119 0.824 
VAR_aggr_south_middle_north 0.052 0.256 0.670 0.692 1.617 1.760 
VAR_aggr_south 0.150  0.491  0.838  
VAR_aggr_middle 0.080  0.670  1.285  
VAR_aggr_north  0.091  0.680  1.422  
VAR_aggr_south_middle 0.065  0.679  1.317  
VAR_aggr_south_north 0.065  0.674  1.309  
VAR_aggr_middle_north 0.065  0.674  1.309  
VAR_south_middle_north  0.088  0.697  1.438 
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**The lag length for the AR varies between 1 and 3 that of the MA varies between 1 
and 2 
 
5. Conclusions 

 
This study investigates whether forecasting aggregate inflations series by 

modeling the subcomponents performs better than forecasting the aggregate series 
directly, and whether including the disaggregate components in the aggregate model 
improves the forecasts of the aggregate series. The benchmark model with which all 
the other models are compared is the univariate autoregressive (AR) of the aggregate 
series. The aggregate series is also modeled using moving average (MA) models. The 
subcomponents are modeled either independently as autoregressions (AR), moving 
average (MA) or jointly as vector autoregressions (VARs) with or without the aggregate 
series.  

 
The results reveal that direct forecasts of aggregate inflation outperform 

aggregate forecasts that are derived from aggregating forecasts from the 
subcomponents for all the steps of the forecasts. Including information from the 
subcomponents improves on the direct forecasts of the aggregate series for 1-step-
ahead forecasts. This, however, depends on the subcomponents or their combinations 
that are used with the aggregate series. A careful selection of the subcomponents into 
the models is, therefore, needed to achieve more accurate forecasts. The results for 6-
step-ahead and 12-step-ahead forecasts show that direct univariate forecasts are 
superior to the forecasts from all the models. This result should therefore be taken 
carefully because a longer sample is needed to evaluate more independent forecasts 
errors for these steps. 

 
Our findings are similar to that of Hendry  and Hubrisch(2010) who find that 

combining disaggregate information outperforms combining disaggregate forecasts. 
The results, however, contradict Aron and Mueller(2008) and others who find that 
aggregating forecasts from disaggregates is superior to direct forecasting of the 
aggregate series. 
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